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Abstract— This paper proposes an adaptive motion estimation
(ME) order for frame rate up-conversion (FRUC). Almost all
existing FRUC methods adopt a raster scan order for ME. The
ME is performed from top-left blocks to bottom-right blocks in
raster scan order. Such an order can propagate some wrongly
estimated motion vectors (MV) through a frame. The proposed
method first detects the blocks rich in features (feature blocks)
and estimates their MVs. Then ME is performed on the other
blocks according to their distance to feature blocks. The closer
a block to feature blocks is; the earlier the ME is performed on
it. In this adaptive order, MVs of feature blocks are propagated
to its neighbors. It makes the estimated motions of a frame close
to the true motions. In order to demonstrate the efficiency of the
proposed method, we estimate the MVs with diamond search
in the proposed adaptive ME order. In the experiments, the
quality of frame rate up converted videos have been significantly
improved compared with the ones using traditional raster scan
order. Moreover, the adaptive ME order can be easily combined
with various ME methods applied in previous FRUC.

I. INTRODUCTION

Frame rate up-conversion (FRUC) is the technique that
generates videos with high frame rate from the ones with low
frame rate. The simplest solution is to add a new frame by
duplicating its previous frame or averaging its previous and
successive frames. However, these methods usually lead to
unacceptable artifacts in the video sequences with complex
motions.

In order to improve visual experience for videos with high
motions, various motion compensated interpolation (MCI)
based methods [1-4] have been proposed for FRUC. In these
methods, the added frames are interpolated according to the
motion vectors (MV) between its neighbor frames. So accurate
MVs are critical to achieve high-quality frame interpolation.
Then block based motion estimation (ME) is adopted in
various FRUC methods. One of the most classical ME methods
for FRUC is 3DRS [5]. In 3DRS, spatial-temporal candidates
are used to initialize a block’s motion vector. Apart from
3DRS, other ME methods for video coding such as DS [6],
HS [7], UMHS [8] and EPZS [9] can also be used for FRUC.
All of these ME methods are designed for single block. They
are always performed in raster scan order, where blocks within
a frame are scanned from top-left to bottom-right.

Other works like [10] and [11] take feature correspondences
into account. They track feature points between frames and
use the points’ trajectories as initial MVs. In these feature

concerned methods, blocks’ motions are still estimated in
raster scan order.

The traditional ME methods for FRUC improve the accuracy
of MVs either by a robust matching function, better motion
search strategy or better motion initialization. In these meth-
ods, the ME is performed block by block in raster scan order,
and the MV of current block is utilized as a candidate MV for
its not estimated neighbors. The true MV of textureless block
is hard to get, and once the MV of a block is wrong, it tends
to be propagated to the not estimated blocks in this frame.

In order to alleviate the above drawbacks of traditional
ME, this paper proposes an adaptive order for ME other
than raster scan order. This adaptive order is constructed as
follows: First, ME is performed on the blocks rich in features
(feature blocks). Secondly, the ME order of the other blocks
is constructed according to their distance to feature blocks.
During the ME phase, the closer a block to feature blocks is,
the earlier the ME is performed on it. Experimental results
testified that the quality of interpolated frames is significantly
improved by performing ME in the proposed adaptive order.

The rest of the paper is organized in three sections. In
Section II, we will describe motion estimation process in the
proposed adaptive order detailedly. In Section III, the experi-
mental results are given to prove the enhancement generated
from the proposed method. At last, we give a brief conclusion
in Section IV.

II. MOTION ESTIMATION IN ADAPTIVE ORDER

In previous FRUC algorithms, ME is performed over blocks
in traditional raster scan order. As shown in Fig.1, spatial-
temporal candidates are used to initialize current block’s MV.
The candidate minimizing motion cost (SAD or SSD) value
is assigned to the current block as initial MV. The final MV
can be obtained by performing ME in a search range. In such
order, MVs are propagated from top-left blocks to the ones
bottom-right.

For the blocks with blank textures, their MVs tend not to
be close to the true motions. It is caused by the limitation
of motion cost measurement for textureless regions. If we
perform ME in raster scan order, some wrongly estimated MVs
will be propagated to the not estimated blocks and reduce the
visual quality of interpolated frames.

978-1-4673-5762-3/13/$31.00 ©2013 IEEE 2992
Authorized licensed use limited to: UNIVERSITY OF MANITOBA. Downloaded on November 05,2024 at 06:53:56 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Flow diagram of proposed adaptive ME order construction method

(a) (b) (c)

Fig. 1. Traditional raster scan order and spatial-temporal candidates. In raster
scan order (a), top-left blocks are estimated ahead of the ones bottom-right.
In (b), MVs of current block ’s right-down neighbor is taken as temporal
candidate, it has been estimated in previous frame. In (c), MVs of left and up
neighbors are taken as spatial candidates, they are estimated in current frame.

In order to alleviate this drawback, we construct an adaptive
ME order based on feature blocks. The flow diagram of the
proposed method is shown in Fig.2. In this method, feature
points are first detected using a fast integrated feature point
detector. After that, the trajectories between frames of the
feature points are tracked as sparse Lucas-Kanade optical flow
[12]. Then feature blocks are detected and initialized with the
feature points and feature trajectories. At last, a FIFO queue is
implemented. The blocks closer to feature blocks are inserted
into the queue ahead of the farther ones. The head block of
the FIFO queue is estimated and popped out one by one. The
ME will be terminated until the queue is empty.

Feature blocks are crucial in this adaptive order construc-
tion. Their MVs are close to true motions. It benefits from
their distinguishable textures. On the other hand, neighbor
blocks of feature blocks tend to have similar motions. Then
the blocks closer to feature blocks should be estimated ahead
of the farther ones. Thus, MVs are propagated from blocks
closer to feature blocks to the farther ones. Performing ME
in such adaptive order will not only increase the accuracy of
MVs but also smooth the motion field.

A. Integrated feature point detection

Since local regions around feature points are usually rich in
textures, feature point detection is widely used for image/video
processing. Two of the most famous detectors are FAST de-
tector [13] and Harris detector [14]. The FAST detector is fast
because it compares pixel intensity through a binary decision
tree. The Harris detector computes a matrix of second-order
image derivatives, it can filter out the points along edges.
In order to combine these different characteristics of the
two detectors, they are integrated to get better responses as
shown in Fig.3. After feature point detection, feature points’
trajectories are tracked as sparse Lucas-Kanade optical flow.

(a) (b) (c)

Fig. 3. A sample of integrated corner points detection. (a) is a frame from
sequence Foreman, (b) is the feature points detected by FAST detector, (c)
is the final feature points after filtered out by Harris detector. All the feature
points are drawn as circles with diameter of 9 pixels.

B. Feature block detection

As feature points’ locations are arbitrary and in subpixel
accuracy, they should be converted to block based form for
ME. So we detect and initialize feature blocks using feature
points and feature trajectories. The 9×9 image patch around
a feature point is defined as a feature patch, and a frame is
divided into 8×8 blocks. As shown in Fig.4, a block may
be covered with multiple feature patches. We calculate the
weight of a feature patch P based on its overlapped area
Soverlap(B,P ) with block B as follows:

w(B,P ) =

 Soverlap(B,P ) : Soverlap(B,P ) > αS(B)

0 : otherwise
(1)

In Eq.1, α is a threshold ratio and S(B) is the area of B.
Then we sum the weight w(B,P ) of every feature patch that
covers B, and detect B as a feature block if this sum is larger
than 0. The MV of a feature block Bfeature is initialized by
Eq.2. In Eq.2, T (Pi) is the optical flow of the feature point
centering at patch Pi, and Pi is one of the n patches that cover
Bfeature.

MVinitial(Bfeature) =

∑n
i=1 w(Bfeature, Pi)T (Pi)∑n

i=1 w(Bfeature, Pi)
(2)

In some cases, T (Pi) has low confidence. If the correspond-
ing SAD value is larger than a threshold, T (P ) is recalculated
as follows:

Tinitial(P ) =

∑4
i=1 w(P,Bi)MVprevious(Bi)∑4

i=1 w(P,Bi)
(3)

In Eq.3, MVprevious(Bi) is the MV of Bi estimated in
previous frame, and Bi is one of the four blocks that overlap
with patch P . After obtaining Tinitial(P ), we further estimate
T (P ) as:

T (P ) = Tinitial(P ) + Tme(P ) (4)
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Fig. 4. Overlap between feature patches and feature blocks.

(a) (b)

Fig. 5. A sample of blocks’ distance from feature blocks (a) and blocks’
arrangement in the FIFO queue (b).

where the added trajectory Tme(P ) is from ME operation
on feature patch P .

C. Motion estimation in adaptive order

After initializing all the feature blocks, ME is performed on
them at first. The ME order for the other (non-feature) blocks
is decided by their distance to nearest feature block shown in
Fig.5 (a). The closer a block to its nearest feature block is,
the earlier the ME is performed on it. For the blocks with the
same distance, they are estimated in raster scan order.

Once the MV of a block has been estimated, it is used as
additional candidate for its neighbor blocks. With the method
described above, well estimated MVs are propagated from
feature blocks to non-feature blocks in an adaptive order. In
order to arrange the blocks, a FIFO queue is adopted, which is
shown in Fig.5 (b). For a better understanding of our method,
the motion estimation process in the proposed adaptive order
is given in Algorithm 1.

III. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed
method, the odd frames of the test sequences are dropped.
Then these frames are interpolated by MCI with estimated
MVs. The MVs are estimated by diamond search in proposed
adaptive order and diamond search in traditional raster scan
order respectively. We compare the quality of interpolated
frames by the above two methods to testify the effectiveness
of our proposed adaptive ME order.

To measure the quality of interpolated frames, PSNR and
SSIM [15] value of luminance (Y) component between the
interpolated and original odd frames are calculated. PSNR
value is the most common quality metrics to evaluate similarity

Algorithm 1: Motion Estimation in Adaptive Order
Input: Set of feature blocks Sfeature and Set of all

blocks Sall

Output: Motion vectors of blocks MV

1 Initialize a FIFO queue Q;

2 foreach block b in the set Sall do
3 Set D(b) to MAX;
4 end

5 foreach feature block f in the set Sfeature do
6 Set D(f) to 0;
7 Set MVinitial(f) using Eq.2;
8 Insert f into Q;
9 end

10 while Q is not empty do
11 Pop the head block q from Q;
12 Estimate MV (q) using optional ME method around

MVinitial(q);
13 foreach neighbor block n of q do
14 if D(n) > D(q) + 1 then
15 Set D(n) to D(q) + 1;
16 Add MV (q) as additional candidate;
17 Add MVs of n’s not estimated neighbors as

temporal candidates;
18 Select the candidate that minimize SAD as

MVinitial(n);
19 Insert n into Q;
20 end
21 end
22 end

between frames. However, it is not always consistent with
subjective quality. So SSIM is developed to generate objective
values, which are more consistent with human visual sense.
In the experiments, frame interpolation is accomplished using
raw MVs without any post-refinement. Then influences from
other factors can be prevented.

The experiment is done on several typical CIF sequences,
including Foreman, Coastguard, Stefan, Flower and Mobile.
Shared parameters such as block size and search range are
all set the same for FRUC with traditional raster scan order
and FRUC with proposed adaptive order. It guarantees that
the different order is the only factor that makes differences to
performance. The performance comparison between the two
methods is summarized in Table I, from which we can see
that the PSNR of interpolated frames is improved by 1.87dB
in average over the 5 sequences by the proposed adaptive
order. Fig.6 shows frame by frame comparison from three
test sequences. We also give the comparison in SSIM scores
in Table II, where SSIM scores are increased by 0.0468 in
average.
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TABLE I
QUALITY COMPARISON ON PSNR

Sequence Traditional Order Adaptive Order Improvement

Forman 30.58 32.97 2.39
Coastguard 31.45 33.20 1.75

Stefan 25.93 28.12 2.19
Flower 28.17 29.80 1.63
Mobile 28.10 29.50 1.40

Average 28.85 30.72 1.87

TABLE II
QUALITY COMPARISON ON SSIM

Sequence Traditional Order Adaptive Order Improvement

Forman 0.8665 0.9265 0.0600
Coastguard 0.8851 0.9341 0.0490

Stefan 0.8617 0.9270 0.0653
Flower 0.9143 0.9572 0.0429
Mobile 0.9427 0.9599 0.0172

Average 0.8941 0.9409 0.0468

(a)

(b)

(c)

Fig. 6. All the right images are the results from the proposed method while
the left images are from FRUC with ME in raster scan order. (a) is from
sequence Foreman, (b) is from Stefan and (c) is from Mobile.

IV. CONCLUSION

In this paper, a novel adaptive ME order based on fea-
ture information has been proposed to improve existing ME
methods for FRUC. The main contribution is to estimate
the blocks that tend to provide accurate MVs at first and
propagate these MVs to their neighbors. As a consequence,
MCI artifacts caused by wrong MVs from blank texture blocks
are alleviated. Experimental results on FRUC have proven the
effectiveness of the proposed adaptive order. Although the
implementation in this paper adopts diamond search as its ME
method, the proposed adaptive order can be easily combined
with other ME algorithms for FRUC. In the future, we will
concentrate on improving the adaptive order construction with
more appropriate criterion besides blocks’ distance to nearest
feature block.
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