
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2023 1

DRO: Deep Recurrent Optimizer for Video to Depth
Xiaodong Gu1*, Weihao Yuan1*, Zuozhuo Dai1, Siyu Zhu1, Chengzhou Tang2, Zilong Dong1 and Ping Tan12

Abstract—There are increasing interests of studying the video-
to-depth (V2D) problem with machine learning techniques. While
earlier methods directly learn a mapping from images to depth
maps and camera poses, more recent works enforce multi-
view geometry constraints through optimization embedded in
the learning framework. This paper presents a novel optimiza-
tion method based on recurrent neural networks to further
exploit the potential of neural networks in V2D. Specifically,
our neural optimizer alternately updates the depth and camera
poses through iterations to minimize a feature-metric cost, and
two gated recurrent units iteratively improve the results by
tracing historical information. Extensive experimental results
demonstrate that our method outperforms previous methods and
is more efficient in computation and memory consumption than
cost-volume-based methods. In particular, our self-supervised
method outperforms previous supervised methods on the KITTI
and ScanNet datasets. Our source code will be made public.

Index Terms—Deep Learning for Visual Perception; Computer
Vision for Transportation; Visual Learning

I. INTRODUCTION

V IDEO to depth (V2D) is a fundamental task in computer
vision and essential for numerous applications such

as robotics, autonomous driving, augmented reality, and 3D
reconstruction. Given a sequence of images, V2D methods
optimize depth maps and camera poses to recover the 3D
structure of a scene. Traditional methods solve the Bundle-
Adjustment (BA) problem, where the re-projection error be-
tween reprojected 3D scene points and 2D image feature points
are minimized iteratively.

Recently, deep-learning-based methods have dominated
most benchmarks and demonstrated advantages over tradi-
tional methods [1–6]. Earlier learning-based methods [5, 7–9]
directly regress the depth maps and camera poses from the
input images. To combine the strength of neural networks and
traditional geometric methods, more recent works formulate
the geometric-based optimization as differentiable layers and
embed them in a learning framework [3, 4, 10].

We follow the approach of combining neural networks and
optimization methods with some novel insights. Firstly, previ-
ous methods [3, 4, 11] adopt gradient-based optimization such
as Levenberg-Marquardt or Gauss-Newton methods. However,
the gradients could be noisy and misleading especially for the
high-dimensional optimization problem in dense depth map

Manuscript received: October, 18, 2022; Revised January, 20, 2023; Ac-
cepted March, 6, 2023.

This paper was recommended for publication by Editor Cadena Lerma,
Cesar upon evaluation of the Associate Editor and Reviewers’ comments.
This work was supported by Alibaba Group

*Equal contribution. Authors are with 1 Alibaba Group and
2 Simon Fraser University. dadong.gxd@alibaba-inc.com,
qianmu.ywh@alibaba-inc.com

Digital Object Identifier (DOI): see top of this page.

Δ𝐷, Δ𝑇𝐷! , 𝑇!

Historical
Trajectory

Optimizer

.....

𝐷! = 𝐷" + ∆𝐷"

𝑇! = 𝑇" + ∆𝑇"

𝐷# = 𝐷! + ∆𝐷!

𝑇# = 𝑇! + ∆𝑇!

𝐷$%! = 𝐷$ + ∆𝐷$

𝑇$%! = 𝑇$ + ∆𝑇$

𝐷! 𝑇!

𝐷∗ 𝑇∗

Fig. 1: A gated recurrent network (indicated as the optimizer in
the middle) iteratively updates a depth map and the relative motion
between two images by minimizing a feature-metric cost. At each
iteration, we show a color-coded depth map and a superimposed
image generated from the two input images according to the depth
map and camera motion. Over the iterations, the superimposed image
becomes gradually sharper while the depth map improves.

computation. Traditional methods like LSD-SLAM [12] and
DSO [13] focus on edge pixels to make the optimization
problem feasible. More recent learning-based methods design
learned regularization such as depth bases [3] or manifold
embeddings [14, 15] to address this problem. However, this
learned regularization might have difficulty to be generalized
to unseen scenes. Furthermore, a multi-resolution strategy is
needed to gradually compute the solution from coarse to fine.
In comparison, we employ a gated recurrent neural network
for optimization as inspired by [16]. An illustration is shown in
Fig. 1. Remarkably, our method is gradient-free and works on
the high resolution image directly without any regularization
which might limit the algorithm generalization.

Secondly, some methods [4, 6, 10, 17] build cost volumes
to solve dense depth maps. Similar cost volumes are also
employed in [16] to compute optical flow. A cost volume
encodes the errors of multiple different depth values at each
pixel. It evaluates the result quality within a large spatial
neighborhood in the solution space in a discrete fashion. While
cost volumes have been demonstrated effective in computing
depth maps [6, 18, 19], they are inefficient in time and
space because they exhaustively evaluate results in a large
spatial neighborhood. Differently, in this work, we use a gated
recurrent network [20] to minimize the feature-metric error to
compute dense depth without computing such a cost volume. A
gated recurrent network updates depth maps only by evaluating
the current solution (i.e. a single point in the solution space)

ar
X

iv
:2

10
3.

13
20

1v
4

 [
cs

.C
V

]
 7

 M
ar

 2
02

3

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2023

I0

Ii

D0

Ti
0

Δ𝐷Dt

Ti
t Δ𝑇!

+

Feature
Net

Feature
Net

Depth
Head

Pose
Head

Ci
t

Depth GRU
Optimizer

Pose GRU
Optimizer + Concatenation

Weight sharing

ℱ!"

ℱ#"

ℱ#

ℱ!

Fig. 2: The overview of our framework. The reference image I0 and context images Ii are first fed into a feature network with shared
parameters to extract feature maps. The extracted features are then mapped to an initial depth map D0 and an initial relative camera pose
T0

i by the depth head and the pose head, respectively. Afterwards, the recurrent optimizer update the depth and pose iteratively. During this
optimization, we first compute a cost map Ct

i from the current solution Dt and Tt
i . The GRU optimizer then computes the solution updates

∆D and ∆Ti accordingly. Eventually, the depth map and pose gradually converge to the optimum, D∗ and T∗
i .

and some previous solutions over time. In spirit, our learned
recurrent network exploits temporal information during itera-
tions, while gradient based methods [3] or cost volume based
methods [6] rely only on spatial information. In this way, our
method has the potential of better running time and memory
efficiency.

In experiments, we show that our recurrent optimizer re-
duces the feature-metric cost over iterations and produces
gradually improved depth maps and camera poses. Our method
demonstrates better accuracy than previous methods in both
indoor and outdoor data, under both supervised and self-
supervised settings. In particular, our self-supervised method
outperforms previous methods by 14.5% on KITTI and by
23.2% on ScanNet.

Our contributions can be summarized as follows:
1) We propose a novel recurrent optimizer for joint depth

and pose optimization where gradients or cost volumes are not
involved for better memory and computation efficiency.

2) The depths and poses are alternately updated to uncouple
the mutual influence by the GRU module for effective opti-
mization.

3) Our optimizer produces better results than previous
methods in both supervised and self-supervised settings.

II. RELATED WORK

Supervised Deep V2D. Deep neural networks can learn to
solve the V2D problem directly from data [5, 6, 17, 21]. With
the ground-truth information, DeMoN [5] trains two network
branches to regress depths and motions separately with an
auxiliary flow prediction task to exploit feature correspon-
dences. Some methods adopt a discrete sampling strategy to
achieve high-quality depth maps [4, 17]. They generate depth
hypotheses and utilize multiple images to construct a cost
volume. Furthermore, the pose volume is also introduced in
[6]. They take the feature maps to build two cost volumes
and employ 3D convolutions to regularize. There are also
methods to directly regress scene depth from a single input
image [1, 7, 22], which is an ill-posed problem.

Self-supervised Deep V2D. Supervised methods, neverthe-
less, require collecting a large number of training data with
ground-truth depth and camera poses. Recently, many self-
supervised works [2, 23–33] have been proposed to train
a depth and pose estimation model from only monocular

RGB images. They employ the predicted depths and poses
to warp neighbor frames to the reference frame, such that a
photometric constraint is created to serve as a self-supervision
signal. In this case, the dynamic objects is a problem and
would generate errors in the photometric loss. To address this,
semantic mask [34] and optical flow [35–37] are proposed to
exclude the influence of moving objects. Another challenge
is the visibility between different frames. To deal with this, a
minimum re-projection loss is designed in [2, 24] to handle
the occlusion. Despite these efforts, there is still a gap between
self-supervised and supervised methods.

Learning to Optimize. Traditional computer vision meth-
ods usually formulate the tasks as optimization problems
according to the first principles such as photo-consistency and
multi-view geometry. Many of recent works try to combine
the strength of neural networks and traditional optimization-
based methods. There are mainly two approaches in learning
to optimize. One approach [3, 4, 38, 39] employs a network to
predict the inputs or parameters of an optimizer, which is im-
plemented as some layers in a large neural network for end-to-
end training. On the contrary, the other approach directly learn
to update optimization variables from the data [11, 16, 40–
42]. There, however, are some problems in previous methods.
Methods of the first approach need to explicitly formulate
the solver and are limited to problems where the objective
functions are easily defined [3, 4, 38, 39]. Furthermore, the
methods in [3, 11] need to explicitly evaluate gradients of the
objective function, which is hard in many problems. Besides,
the methods in [4, 16] adopt cost volumes, which make the
model heavy to apply.

In comparison, our method does not require gradients
computation or cost volume aggregation. It only evaluates
the result quality at a single point in the solution space at
each step. By accumulating temporal evidence from previous
iterations, our GRU module learns to minimize the objective
function. Besides, two updaters in our framework, one for
depth and the other one for pose, are alternately updated,
which is inspired by the traditional bundle adjustment.

III. DEEP RECURRENT OPTIMIZER

A. Overview

Given a reference image I0 and N neighboring images
{Ii}Ni=1, our method outputs the depth D of the reference

GU et al.: DRO: DEEP RECURRENT OPTIMIZER FOR VIDEO TO DEPTH 3

Depth GRU Optimizer Depth GRU Optimizer Depth GRU Optimizer

Pose GRU Optimizer Pose GRU Optimizer Pose GRU Optimizer

D head D headD head D head

Conv ConvConv Conv

Conv ConvConv Conv

T head T headT head T head

Conv ConvConv Conv

Conv ConvConv Conv

Avg Pooling

Depth GRU Optimizer Pose GRU Optimizer

Avg PoolingAvg PoolingAvg Pooling∆𝐷# ∆𝐷$ ∆𝐷% ∆𝐷&

𝐷# 𝐶# 𝐷$ 𝐶$ 𝐷% 𝐶% 𝐷& 𝐶&

∆𝑇!# ∆𝑇!$ ∆𝑇!% ∆𝑇!&

𝑇!# 𝐶!# 𝑇!$ 𝐶!$ 𝑇!% 𝐶!% 𝑇!& 𝐶!&ℱ#" ℱ#" ℱ#" ℱ#" ℱ!" ℱ!" ℱ!" ℱ!"

Fig. 3: Working flow of the optimizer. Updating of the depth and the pose are separated in each stage, where 4 updates of the depth are
followed by 4 updates of the pose. We adopt 3 stages in our framework. For each update for the depth, the predicted depth Dt, cost Ct,
and contextual feature map Fc

0 are fed in, then the update ∆Dt is predicted based on the inputs and historical information. Afterwards, the
depth is updated by Dt+1 = Dt + ∆Dt.

image and the relative camera poses {Ti}Ni=1 for images
{Ii}Ni=1 as shown in Fig. 2. Images first go through a shared
feature extraction module to produce feature maps Fi. A depth
head and a pose head then take in these features and output
an initial depth map D0 and initial relative poses T0

i . Finally,
these initial results are iteratively refined by the depth and
the pose GRU-optimizers alternately, and converge to the final
depth D∗ and poses T∗i .

B. Feature Extraction and Cost Construction
a) Feature extraction.: We use ResNet18 [43] as the

backbone to extract the features {Fi}Ni=0. The resolution of the
feature maps is 1/8 of the original input images. Likewise, the
initial hidden state defined by h0 and the contextual features
{Fc

i }Ni=0 for the GRU optimizer come from the same-structure
feature network.

b) Cost Construction: Similar to BA-Net [3], we con-
struct a photometric cost in feature space as the energy
function to minimize. The cost measures the distance between
aligned feature maps. Given the depth map D of the reference
image I0 and the relative camera pose Ti of another image Ii
with respect to I0, the cost is defined at each pixel x in the
reference image I0:

Ci(x) = ||Fi(π(Ti ◦ π−1(x,D(x))))−F0(x)||2, (1)

where || · ||2 is the L2 norm, and π(·) is the projection of
a 3D point to the image plane. Thus, its inverse function
π−1(x,D(x)) maps a pixel x and its depth D(x) back
to a 3D point. The transformation Ti convert 3D points
from the camera space of I0 to that of Ii. When there are
multiple neighboring images, we average multiple cost values
{Ci(x)}Ni=1 as C(x) at each pixel:

C(x) =
1

N

N∑
i=1

Ci(x). (2)

Note that the feature-metric error in BA-Net [3] will further
sum the cost over all pixels as

∑
x C(x). However, in this

work, we maintain a cost map C(x) with the same resolu-
tion as the feature map Fi to facilitate minimization of the

feature-metric error. In the following of this paper, we refer
C(x) as cost map instead of feature-metric error. In alternate
optimization, the camera pose Ti is optimized by minimizing
Ci(x) and the depth map D is optimized by minimizing the
averaged cost C(x).

C. Iterative Optimization
We minimize the cost map C in an iterative manner. At

each iteration, the optimizer updates the results as

Dt+1 ← Dt + ∆Dt, Tt+1
i ← Tt

i + ∆Tt
i, (3)

where ∆D and ∆Ti are the updates. Inspired by [16], we
utilize a gated recurrent unit to compute these updates, since
a GRU can memorize the status of previous steps and can ef-
fectively exploit temporal information during the optimization
process.

1) Initialization: The depth map and relative poses are
initialized by two different heads on top of the feature ex-
traction network. The depth head consists of two convolution
layers, while the pose head is further equipped with an
additional average pooling layer. The hidden state of the GRU
is initialized by the contextual features with the tanh function
as activation.

2) Recurrent Update: We design two GRU modules, one
for updating the depth and the other one for updating the
camera pose. Each GRU module receives the current cost map
Ct and the current estimated variables Vt (depth map Dt or
camera pose Tt) and outputs an incremental update ∆Vt to
update the results as Vt+1 = Vt + ∆Vt.

Specifically, we first project the variable Vt and the cost
map Ct into the feature space with Pv and Pc, both of
which are composed of two convolutional layers. We then
concatenate Pv(Vt), Pc(C

t), and the image contextual feature
Fc to form a tensor Mt as the input. The structure inside each
GRU unit is as follows:

zt+1 = σ(Conv5×5([ht,Mt],Wz))

rt+1 = σ(Conv5×5([ht,Mt],Wr))

h̃t+1 = tanh(Conv5×5([rt+1 � ht,Mt],Wh))

ht+1 = (1− zt+1)� ht + zt+1 � h̃t+1,

(4)

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2023

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1

1.5

2

2.5

3

3.5

4

4.5

5

0 4 8 12
#Iteration

Feat. Error
Abs_rel

Depth

0

1

2

3

4

5

6

1

1.5

2

2.5

3

3.5

4

4.5

5

0 4 8 12
#Iteration

Feat. Error
Rot (deg)

Pose

Cost map Depth Warp-align

Im
age

D
eepV

2D
O
urs

G
round

truth
D
eepSfM

D
eM
oN

Reference Neighbour Ground-truth depth

Fig. 4: The first row shows the feature-metric error (the cost), depth
error, and camera pose error decrease with regards to the iterations
of the GRU optimizer. In the middle we show the estimated cost
map, depth map, and a warp-aligned image at each iteration of the
GRU optimizer. The warp-aligned image warps a neighbor image
onto the reference image using the estimated depth and camera pose.
It becomes clearer at later iterations, indicating a better result.

where Conv5×5 represents a separable 5×5 convolution, � is
the element-wise multiplication, σ and tanh are the sigmoid
and the tanh activation functions. Finally, the depth maps or
the camera poses are predicted from the hidden state ht by the
same structures as the initial depth or pose head in Sec. III-C1.

With this optimizer, starting from an initial solution, the
estimated depths and poses are iteratively refined by the
optimization iterations and eventually converge to the final
results as, Dt → D∗ and Tt

i → T∗i .
3) Alternate Optimization: After defining the structure of

the GRU module, we update the depth map Dt and camera
poses Tt

i alternately with m stages. As shown in Fig. 3, at each
stage, we first freeze the camera pose and update the depth
map as Dt+1 = Dt + ∆Dt, which is repeated by n times.
We then freeze the depth map D and update the camera poses
with Tt+1

i = Tt
i + ∆Tt, which is also repeated by n times.

This alternative optimization leads to more stable optimization
and easier training empirically. In experiments, we fix m at 3
and n at 4, unless specified otherwise.

To gain more insights into the recurrent process and demon-
strate the GRU module behaves as a recurrent optimizer, we
visualize how the feature-metric error decreases over the GRU
iterations on the first row of Fig. 4. The blue curves are
the plots of the feature-metric cost over iterations, while the
yellow curves are the errors in depth map and relative camera
poses compared with a known ground truth. In general, the
feature-metric error decreases, but not strictly monotonically
decreases. The error might increase and then decrease again,
indicating our optimizer has the capability of jumping out of
local minimums.

The last two rows of Fig. 4 further visualize the intermediate
results over the iterations. At the bottom are the two input
images and the ground truth depth map. In the middle, shown
are the cost map C, estimated depth map, and a warp-
aligned image that is composed by warping the neighbor
image according to the estimated depth and camera pose and
superimpose with the reference image. From top to bottom we
can see the warp-aligned image becomes sharper, indicating
higher quality of estimated depth and camera pose.

D. Training Loss

Our method can be applied to both supervised and self-
supervised V2D problem. In the following, we introduce the
training loss for both schemes.

1) Supervised Case: When the ground truth is available,
we supervise the training by the depth and pose errors.

Depth supervision Ldepth computes the L1 distance between
the predicted depth map D and the ground-truth depth map
D̂ in each stage.

Pose supervision Lpose is defined as the following according
to the ground truth depth D̂ and pose T̂i:

Lpose =

m∑
s=1

∑
x

γm−s||π(Ts
i ◦ π−1(x, D̂(x)))−

π(T̂i ◦ π−1(x, D̂(x)))||1.
(5)

This loss computes the image re-projection of a pixel x
according to the estimated camera pose Ts

i and the true pose
T̂i in each stage. The pose loss is the distance between these
two projections, which is in the image space and insensitive
to different scene scales.

2) Self-supervised Case: When the ground truth is not
available, we borrow the loss defined in [47] for self-
supervised training. Specifically, the supervision signal comes
from geometric constraints and consists of two terms, a
photometric loss and a smoothness loss.

Photometric loss Lphoto measures the similarity of the
reconstructed images {I′i}Ni=1 to the reference image I0. Here,
the reconstructed images I

′

i are generated by warping the input
image Ii according to the depth D and pose Ti to reconstruct
I0. This similarity is measured by the structural similarity
(SSIM) [48] with L1 loss as

Lphoto = α
1− SSIM(I

′

i, I0)

2
+ (1− α)||I

′

i − I0||1, (6)

GU et al.: DRO: DEEP RECURRENT OPTIMIZER FOR VIDEO TO DEPTH 5

Input Image PackNet-SfM Ours Ground truth

Fig. 5: Qualitative results on the KITTI dataset.

Method Input Supervised GT type Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

MonoDepth [24] M→O 7 Improved 0.090 0.545 3.942 0.137 0.914 0.983 0.995
PackNet-SfM [2] M→O 7 Improved 0.071 0.359 3.153 0.109 0.944 0.990 0.997

DRO (ours) Multi 7 Improved 0.057 0.342 3.201 0.123 0.952 0.989 0.996

Kuznietsov et al. [44] One 3 Improved 0.089 0.478 3.610 0.138 0.906 0.980 0.995
DORN [1] One 3 Improved 0.072 0.307 2.727 0.120 0.932 0.984 0.995

PackNet-SfM [2] M→O 3 Improved 0.064 0.300 3.089 0.108 0.943 0.989 0.997
BANet [3] Multi 3 Improved 0.083 − 3.640 0.134 − − −

DeepV2D (2-view) [4] Multi 3 Improved 0.064 0.350 2.946 0.120 0.946 0.982 0.991
Wang et al. [21] Multi 3 Improved 0.055 0.224 2.273 0.091 0.956 0.984 0.993

DRO (ours) Multi 3 Improved 0.047 0.199 2.629 0.082 0.970 0.994 0.998

SfMLearner [33] M→O 7 Velodyne 0.208 1.768 6.856 0.283 0.678 0.885 0.957
CCNet [26] M→O 7 Velodyne 0.140 1.070 5.326 0.217 0.826 0.941 0.975
GLNet [45] M→O 7 Velodyne 0.135 1.070 5.230 0.210 0.841 0.948 0.980

MonoDepth [24] M→O 7 Velodyne 0.115 0.882 4.701 0.190 0.879 0.961 0.982
PackNet-SfM [2] M→O 7 Velodyne 0.107 0.803 4.566 0.197 0.876 0.957 0.979
ManyDepth [46] M→O 7 Velodyne 0.093 0.715 4.245 0.172 0.909 0.966 0.983

DRO (ours) Multi 7 Velodyne 0.088 0.797 4.464 0.212 0.899 0.959 0.980

PackNet-SfM [2] M→O 3 Velodyne 0.090 0.618 4.220 0.179 0.893 0.962 0.983
DRO (ours) Multi 3 Velodyne 0.073 0.528 3.888 0.163 0.924 0.969 0.984

TABLE I: Quantitative results on the KITTI dataset. Eigen split is used for evaluation and seven widely used metrics are reported. Results
on two ground-truth types are displayed since different methods are evaluated using different types. ‘M→O’ means multiple images are used
in the training while one image is used for inference.

where α is a weighting factor. For the fusion of multiple
photometric losses, we also take the strategies defined in [47],
which adopts a minimum fusion and masks stationary pixels.

Smoothness loss Lsmooth encourages adjacent pixels to have
similar depths and is defined as:

Lsmooth = |∂xD|e−|∂xI0| + |∂yD|e−|∂yI0|. (7)

IV. EXPERIMENTS

A. Implementation Details

Our work is implemented in Pytorch experimented with on
Nvidia GTX 2080 Ti GPUs. The network is optimized end-
to-end with the Adam optimizer (β1 = 0.9, β1 = 0.999). The
training runs for 50 epochs with the learning rate reduced from
2× 10−4 to 5× 10

−5

. For the supervised training, we use the

losses described in Sec. III-D1 with γ set as 0.85. For the
self-supervised training, the losses are depicted in Sec. III-D2
with α set as 0.85 and λ set as 0.01.

B. Datasets

KITTI dataset. The KITTI dataset is a widely used bench-
mark with outdoor scenes captured from a moving vehicle.
We adopt the training/testing split proposed by Eigen et al. [7]
with 22, 600 training images and 697 testing images. There are
two types of ground-truth depth. One is the original Velodyne
Lidar points which are quite sparse. The other one is the
improved annotated depth map, which uses five successive
images to accumulate the Lidar points and stereo images to
handle moving objects. For the improved depth type there are
652 images for testing.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2023

Method Supervised Abs Rel Sq Rel RMSE RMSElog SI Inv Rot (deg) Tr (deg) Tr (cm) Time (s)

Photometric BA [12] 3 0.268 0.427 0.788 0.330 0.323 4.409 34.36 21.40 −
DeMoN [5] 3 0.231 0.520 0.761 0.289 0.284 3.791 31.626 15.50 −
BANet [3] 3 0.161 0.092 0.346 0.214 0.184 1.018 20.577 3.39 −

DeepV2D (2-view) [4] 3 0.069 0.018 0.196 0.099 0.097 0.692 11.731 1.902 0.95
DRO (ours) 7 0.140 0.127 0.496 0.212 0.210 0.691 11.702 1.647 0.11
DRO (ours) 3 0.053 0.017 0.168 0.081 0.079 0.473 9.219 1.160 0.11

TABLE II: Quantitative results on the ScanNet dataset. Five metrics of the depth and three metrics of the pose are reported.

Im
ag
e

D
ee
pV
2D

O
ur
s

G
ro
un
d
tru
th

Im
ag
e

D
ee
pV
2D

O
ur
s

G
ro
un
d
tru
th

Im
ag
e

D
ee
pV
2D

O
ur
s

G
ro
un
d
tru
th

Im
ag
e

D
ee
pV
2D

O
ur
s

G
ro
un
d
tru
th

Fig. 6: Qualitative results on the ScanNet dataset.

ScanNet dataset. ScanNet [49] is a large indoor dataset
with 1, 513 RGB-D videos in 707 distinct environments. The
raw data is captured from a depth camera. The depth maps and
camera poses are obtained from RGB-D 3D reconstruction. We
use the training/testing split proposed by [3] with 2, 000 test
image pairs from 90 scenes.

C. Evaluation

Evaluation on KITTI. For outdoor scenes, we present
the results of our method and some previous methods on
the KITTI dataset in TABLE I. State-of-the-art single-frame
depth estimation methods [1, 44] and deep V2D methods [2–
4, 24, 26, 33, 45] are listed. For a fair comparison, all V2D
methods are evaluated under the two-view setting. From the
results, our approach outperforms other methods by a large
margin in both the supervised setting and the self-supervised
setting. Also, the performance of our self-supervised model
already surpasses most of previous supervised methods. The
qualitative results of these outdoor scenes are shown in Fig. 5,
from which we can see our approach estimates better depth for
distant and small-size or thin objects, e.g., people, motorbikes,
and guideposts. Also, we predict sharper edges at object
boundaries. Thin structures are usually recovered by fine
updates in the last few iterations.

Evaluation on ScanNet. For indoor scenes, we evaluate
our method on the ScanNet dataset in TABLE II. For a fair
comparison, all methods are evaluated under the two-view
setting since there are only 2 images in the test split. The
results of Photometric BA and DeMoN are cited from [3]. The

Setting Abs Rel Sq Rel RMSE Rlog 1.25 1.252

w/o GRU 0.058 0.258 2.953 0.097 0.955 0.992
w/o Alter 0.055 0.247 2.952 0.094 0.959 0.992
w/o Cost 0.065 0.324 3.270 0.112 0.940 0.988

Cost volume 0.049 0.214 2.804 0.086 0.966 0.994
Full-setting 0.047 0.199 2.629 0.082 0.970 0.994

DRO+ 0.042 0.151 2.294 0.072 0.978 0.996

Infer
iterations

0 0.094 0.529 4.014 0.150 0.891 0.974
4 0.059 0.266 2.992 0.099 0.951 0.992
8 0.049 0.208 2.687 0.084 0.968 0.994
16 0.046 0.198 2.623 0.081 0.970 0.994
24 0.046 0.199 2.626 0.082 0.970 0.994

TABLE III: Ablation study of the depth accuracy on KITTI dataset.
The first six metrics of those used in TABLE I are reported here.

Setting Abs Rel Sq Rel RMSE Rot Tr (deg) Tr (cm)

w/o C, G, A 0.075 0.026 0.215 3.300 61.577 6.405
+ C 0.067 0.023 0.200 0.828 15.769 2.120

+ C + G 0.061 0.020 0.188 0.683 13.020 1.751
Full-setting 0.053 0.017 0.168 0.473 9.219 1.160

DRO+ 0.051 0.015 0.159 0.491 8.715 1.188
DRO5view 0.049 0.015 0.157 0.463 8.871 1.139

TABLE IV: Ablation study of the depth and pose accuracy on
ScanNet. “C”, “G”, and “A” denote Cost, GRU, and Alternate update.
DRO+ refers to the high-resolution model and DRO5view refers to
using five images for inference.

results show that our model outperforms previous methods on
both depth accuracy and pose accuracy. Our self-supervised
model is able to predict the results that are comparable to
previous supervised methods, especially on the pose accuracy.
Among previous methods, DeepV2D performs best but it
requires pre-training a complex pose solver first. Also, the
inference time of their method is much longer than ours. Even
using five views their performance is still not comparable to
ours, with a larger depth error of 0.057. From the qualitative
results shown in Fig. 6, our model predicts the finer depth of
the indoor objects and is robust in clutter. Inference with 5
images further reduces the depth error from 0.053 to 0.049,
as shown in TABLE IV.

D. Ablation Study

To better understand the individual components, we evaluate
each module by an ablation study and present the results in
TABLE III and TABLE IV.

GRU module. The core module of our method is the
recurrent optimizer. To see its effectiveness in optimization, we
replace the GRU block with three convolutional layers. In the
training in KITTI dataset, we found the depth error decreases
to 0.058 in the first a few epochs but then the network diverges.

GU et al.: DRO: DEEP RECURRENT OPTIMIZER FOR VIDEO TO DEPTH 7

This demonstrates that by leveraging the historical information
in a recurrent optimizer, not only a superior optimum could
be reached, but also the optimization would be more stable.
We think this is because the GRU modules could remember
the historical updating information, e.g., it can remember the
historical updating direction and magnitude, which is helpful
for guiding the next update.

Alternate update. It is important to alternately update the
depth and camera poses to decouple their influence in the
feature-metric error. To verify this, we train a model where
the optimizer predicts the updates for depth and camera poses
simultaneously. The depth accuracy in this setting is reduced a
lot. This proves the importance of the alternative optimization.

Cost Volume. One of the advantages of our method is that
we do not need a heavy cost volume for optimization. Here,
we replace the feature-metric cost map C with a H×W ×64
cost volume. The cost volume is in a cascaded structure,
i.e, the depth range of the volume is dynamically adjusted
over iterations for better results. From the results shown in
TABLE III, the performance of using this heavy cost volume
is similar to using the cost map, which proves that employing
information in temporal domain can make up the lack of
neighborhood information in spatial domain. Also, we test the
performance of a model without the cost input. As expected,
the error of the depth estimation is large since the optimizer
loses the objective to minimize.

Iteration times. Until now, we only use 12 iterations of
recurrent optimization for all experiments. We could also vary
the number of iterations during inference. Here, we test dif-
ferent iteration numbers in the inference. Zero iteration means
we do not update the initial depth and pose at all. According to
the results in TABLE III, our optimizer already outputs decent
results after 4 iterations and predicts accurate results after 8
iterations, after which the depths are further refined with more
iterations. This demonstrates that our optimizer has learned to
optimize the estimation step by step. A model trained with a
fixed number of iterations can be applied with more iterations
in real applications to obtain finer results.

Initialization. To inspect how robust our method is to the
initial depth and pose, we add the noise to the initialization and
see how our network performs. TABLE V shows our results
with different levels of Gaussian noise in the predicted initial
depth and camera poses. The parameters Nd{σ}, Nt{σ},
Nr{σ} in the first column are the standard deviations of the
added noise in depth, camera center, and orientation respec-
tively. Note the scene depth range is 10m. Thus, Nd{σ=2m}
is a very large noise. In the last three row, we initialize with
a constant depth at 5m or zero camera motion. For each case,
we show the errors in the initial and optimized results. Our
method always generates high-quality results despite the noisy
initialization. This demonstrates our GRU-based optimization
has a large convergence basin.

High-resolution. Since our method is efficient in compu-
tation and memory consumption, we can use high-resolution
features in the optimization. In previous experiments, the
features F is of 1

8 size of the input image. Here we add an
FPN structure on the features generated by the encoder, to get
features of 1

4 size and 1
2 size. Then we adopt features of 1

4

Noise Setting Initialization After Optimization
AbsRel Rot Tr AbsRel Rot Tr

w/o noise 0.109 3.215 54.257 0.053 0.473 9.219
Nd{1m}Nt{1cm}Nr{1◦} 0.117 3.657 59.299 0.053 0.478 9.546
Nd{1.5m}Nt{2cm}Nr{2◦} 0.130 4.661 65.444 0.059 0.520 10.369
Nd{2m}Nt{5cm}Nr{5◦} 0.157 8.699 75.944 0.089 2.101 24.500

D0 = 5m 0.232 3.215 54.257 0.068 0.684 11.215
t = r = [0, 0, 0] 0.109 3.577 90.000 0.053 0.484 9.418

D0 = 5m, t = r = [0, 0, 0] 0.232 3.577 90.000 0.068 0.677 12.056

TABLE V: Noisy initialization on ScanNet without retraining.

Models Resolution Memory Time Abs Rel

DeepV2D [4] 192× 1088 6.75 G 1.49 s 0.064

DRO iterate 12 320× 960 1.16 G 0.12 s 0.047
iterate 4 320× 960 1.15 G 0.049 s 0.059

TABLE VI: Efficiency experiments on the KITTI dataset.

size in the 2nd stage, and features of 1
2 size in the 3rd stage in

Fig. 3. This high-resolution version obtains better performance
and is denoted by DRO+, as is shown in TABLE III and
TABLE IV.

E. Run-time and Memory Efficiency

We compare our method with DeepV2D [4] in run-time
and memory efficiency in TABLE VI. All experiments are
conducted on the KITTI dataset with an Nvidia GTX 2080
Ti GPU. Compared to DeepV2D, our method achieves similar
depth accuracy with only 4 iterations, which takes only about
1/6 of GPU memory and 1/30 of inference time comparing
with DeepV2D. Even with 12 iterations, our method is still
more than 10 times faster and reduces about 26% depth errors.
More experiments are shown in the supplements.

F. Limitations

Our framework works based on the correspondence between
two frames, in which case the performance decreases when the
overlap between the image pair is small. Also, the estimated
depth on the occluded regions may be inaccurate since there
is no correspondence to build.

V. CONCLUSION

We propose a deep recurrent optimizer for addressing the
video-to-depth problem. Two gated recurrent units have been
introduced to optimize scene structures and camera poses
respectively. Our optimizer avoid computing a cost volume or
gradients by exploiting temporal information during the opti-
mization process. The experiments demonstrate our method
outperforms previous methods on both outdoor and indoor
datasets, in both supervised and self-supervised settings.

REFERENCES

[1] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao,
“Deep ordinal regression network for monocular depth estima-
tion,” in CVPR, 2018, pp. 2002–2011.

[2] V. Guizilini, R. Ambrus, S. Pillai, A. Raventos, and A. Gaidon,
“3d packing for self-supervised monocular depth estimation,”
in CVPR, 2020, pp. 2485–2494.

[3] C. Tang and P. Tan, “Ba-net: Dense bundle adjustment net-
works,” in ICLR, 2019.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2023

[4] Z. Teed and J. Deng, “Deepv2d: Video to depth with differen-
tiable structure from motion,” in ICLR, 2020.

[5] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Doso-
vitskiy, and T. Brox, “Demon: Depth and motion network for
learning monocular stereo,” in CVPR, 2017, pp. 5038–5047.

[6] X. Wei, Y. Zhang, Z. Li, Y. Fu, and X. Xue, “Deepsfm: Structure
from motion via deep bundle adjustment,” in ECCV. Springer,
2020, pp. 230–247.

[7] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction
from a single image using a multi-scale deep network,” in NIPS,
2014, pp. 2366–2374.

[8] D. Jayaraman and K. Grauman, “Learning image representa-
tions tied to ego-motion,” in ICCV, 2015, pp. 1413–1421.

[9] J. H. Lee, M.-K. Han, D. W. Ko, and I. H. Suh, “From big to
small: Multi-scale local planar guidance for monocular depth
estimation,” arXiv preprint arXiv:1907.10326, 2019.

[10] Z. Yu and S. Gao, “Fast-mvsnet: Sparse-to-dense multi-view
stereo with learned propagation and gauss-newton refinement,”
in CVPR, 2020, pp. 1949–1958.

[11] R. Clark, M. Bloesch, J. Czarnowski, S. Leutenegger, and A. J.
Davison, “Ls-net: Learning to solve nonlinear least squares for
monocular stereo,” arXiv preprint arXiv:1809.02966, 2018.

[12] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale
direct monocular slam,” in ECCV. Springer, 2014, pp. 834–
849.

[13] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,”
PAMI, vol. 40, no. 3, pp. 611–625, 2017.

[14] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and
A. J. Davison, “Codeslam—learning a compact, optimisable
representation for dense visual slam,” in CVPR, 2018, pp. 2560–
2568.

[15] M. Bloesch, T. Laidlow, R. Clark, S. Leutenegger, and A. J.
Davison, “Learning meshes for dense visual slam,” in ICCV,
2019, pp. 5855–5864.

[16] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms
for optical flow,” in ECCV. Springer, 2020, pp. 402–419.

[17] H. Zhou, B. Ummenhofer, and T. Brox, “Deeptam: Deep
tracking and mapping,” in ECCV, 2018, pp. 822–838.

[18] X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan, and P. Tan, “Cascade
cost volume for high-resolution multi-view stereo and stereo
matching,” in CVPR, 2020, pp. 2495–2504.

[19] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “Mvsnet: Depth
inference for unstructured multi-view stereo,” in ECCV, 2018,
pp. 767–783.

[20] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical
evaluation of gated recurrent neural networks on sequence
modeling,” arXiv preprint arXiv:1412.3555, 2014.

[21] J. Wang, Y. Zhong, Y. Dai, S. Birchfield, K. Zhang, N. Smolyan-
skiy, and H. Li, “Deep two-view structure-from-motion revis-
ited,” in CVPR, 2021, pp. 8953–8962.

[22] W. Yuan, X. Gu, Z. Dai, S. Zhu, and P. Tan, “Newcrfs: Neural
window fully-connected crfs for monocular depth estimation,”
in CVPR, 2022.

[23] J.-W. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M.-M. Cheng,
and I. Reid, “Unsupervised scale-consistent depth and ego-
motion learning from monocular video,” in NIPS, 2019.

[24] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow,
“Digging into self-supervised monocular depth estimation,” in
ICCV, 2019, pp. 3828–3838.

[25] R. Mahjourian, M. Wicke, and A. Angelova, “Unsupervised
learning of depth and ego-motion from monocular video using
3d geometric constraints,” in CVPR, 2018, pp. 5667–5675.

[26] A. Ranjan, V. Jampani, L. Balles, K. Kim, D. Sun, J. Wulff,
and M. J. Black, “Competitive collaboration: Joint unsupervised
learning of depth, camera motion, optical flow and motion
segmentation,” in CVPR, 2019, pp. 12 240–12 249.

[27] C. Wang, J. M. Buenaposada, R. Zhu, and S. Lucey, “Learning
depth from monocular videos using direct methods,” in CVPR,
2018, pp. 2022–2030.

[28] Y. Wang, P. Wang, Z. Yang, C. Luo, Y. Yang, and W. Xu, “Unos:
Unified unsupervised optical-flow and stereo-depth estimation
by watching videos,” in CVPR, 2019, pp. 8071–8081.

[29] W. Yuan, Y. Zhang, B. Wu, S. Zhu, P. Tan, M. Y. Wang, and
Q. Chen, “Stereo matching by self-supervision of multiscopic
vision,” in IROS. IEEE, 2021, pp. 5702–5709.

[30] N. Yang, R. Wang, J. Stuckler, and D. Cremers, “Deep virtual
stereo odometry: Leveraging deep depth prediction for monoc-
ular direct sparse odometry,” in ECCV.

[31] Z. Yin and J. Shi, “Geonet: Unsupervised learning of dense
depth, optical flow and camera pose,” in CVPR, 2018, pp. 1983–
1992.

[32] H. Zhan, R. Garg, C. S. Weerasekera, K. Li, H. Agarwal, and
I. Reid, “Unsupervised learning of monocular depth estima-
tion and visual odometry with deep feature reconstruction,” in
CVPR, 2018, pp. 340–349.

[33] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
learning of depth and ego-motion from video,” in CVPR, 2017,
pp. 1851–1858.

[34] M. Klingner, J.-A. Termöhlen, J. Mikolajczyk, and T. Fin-
gscheidt, “Self-supervised monocular depth estimation: Solving
the dynamic object problem by semantic guidance,” in ECCV.
Springer, 2020, pp. 582–600.

[35] Y. Zou, Z. Luo, and J.-B. Huang, “Df-net: Unsupervised joint
learning of depth and flow using cross-task consistency,” in
ECCV, 2018, pp. 36–53.

[36] W. Zhao, S. Liu, Y. Shu, and Y.-J. Liu, “Towards better
generalization: Joint depth-pose learning without posenet,” in
CVPR, 2020, pp. 9151–9161.

[37] J.-W. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M.-M. Cheng,
and I. Reid, “Unsupervised scale-consistent depth and ego-
motion learning from monocular video,” in NIPS, 2019.

[38] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and
Z. Kolter, “Differentiable convex optimization layers,” in NIPS,
2019, pp. 9558–9570.

[39] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization
as a layer in neural networks,” in International Conference on
Machine Learning. PMLR, 2017, pp. 136–145.

[40] J. Adler and O. Öktem, “Solving ill-posed inverse problems
using iterative deep neural networks,” Inverse Problems, vol. 33,
no. 12, p. 124007, 2017.

[41] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil,
T. P. Lillicrap, M. Botvinick, and N. Freitas, “Learning to
learn without gradient descent by gradient descent,” in ICML.
PMLR, 2017, pp. 748–756.

[42] L. Fan, W. Huang, C. Gan, S. Ermon, B. Gong, and J. Huang,
“End-to-end learning of motion representation for video under-
standing,” in CVPR, 2018, pp. 6016–6025.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in CVPR, 2016, pp. 770–778.

[44] Y. Kuznietsov, J. Stückler, and B. Leibe, “Semi-supervised deep
learning for monocular depth map prediction,” in CVPR, 2017,
pp. 2215–2223.

[45] Y. Chen, C. Schmid, and C. Sminchisescu, “Self-supervised
learning with geometric constraints in monocular video: Con-
necting flow, depth, and camera,” in ICCV, 2019, pp. 7063–
7072.

[46] J. Watson, O. Mac Aodha, V. Prisacariu, G. Brostow, and
M. Firman, “Self-supervised multi-frame monocular depth,” in
CVPR, 2021, pp. 1164–1174.

[47] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow,
“Digging into self-supervised monocular depth estimation,” in
ICCV, 2019, pp. 3828–3838.

[48] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli et al.,
“Image quality assessment: from error visibility to structural
similarity,” TIP, vol. 13, no. 4, pp. 600–612, 2004.

[49] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner, “Scannet: Richly-annotated 3d reconstructions of
indoor scenes,” in CVPR, 2017.

	I Introduction
	II Related work
	III Deep Recurrent Optimizer
	III-A Overview
	III-B Feature Extraction and Cost Construction
	III-C Iterative Optimization
	III-C1 Initialization
	III-C2 Recurrent Update
	III-C3 Alternate Optimization

	III-D Training Loss
	III-D1 Supervised Case
	III-D2 Self-supervised Case

	IV Experiments
	IV-A Implementation Details
	IV-B Datasets
	IV-C Evaluation
	IV-D Ablation Study
	IV-E Run-time and Memory Efficiency
	IV-F Limitations

	V Conclusion

